3D Printed Technology "FibreTuff®”
Composition of matter for thermoplastic biopolymer
Glad to contribute to the publication at Degruyter with editing by Bhima Vijayendran. Well worth the time to tell a quick story - Chapter 26 on how the FibreTuff PAPC evolved into a novel 3D printed biocompatible material composition and products. Will look forward to working again with Bhima. Thanks Bhima
INVESTIGATION OF THE INFLUENCE OF NYLON-6 VS. NYLON-66 ON THE MECHANICAL PERFORMANCE OF COMPOSITE BONE TISSUE SCAFFOLDS
The 3D printed biocompatible material research will be published through ASME and presented by Dr Ross Salary and Robert Joyce @
2023 IMECE® International Mechanical Engineering …
ASME
1) Abigail Chaffins, Mohan Yu, Pier Paolo Claudio, James B. Day, Roozbeh (Ross) Salary. Investigation of the Functional Properties of Additively-Fabricated Triply Periodic Minimal Surface-Based Bone Scaffolds for the Treatment of Osseous Fractures. August 4, 2021
https://asmedc.silverchair.com/MSEC/proceedings/MSEC2021/85062/V001T03A004/1115357
2) Daguan Zhao, Christoph Hart, Nathan A. Weese, Chantz M. Rankin, James Kuzma, James B. Day,
Roozbeh (Ross) Salary. Experimental and Computational Analysis of the Mechanical Properties of Biocompatible Bone Scaffolds, Fabricated Using Fused Deposition Modeling Additive Manufacturing Process. January 15, 2021 https://pressurevesseltech.asmedigitalcollection.asme.org/MSEC/proceedings/MSEC2020/84256/V001T03A008/1095705
1) Paavana Krishna Mandava, James B. Day, Robert Joyce, Roozbeh (Ross) Salary. Investigation of the Mechanical Properties and Bioactivity of Additively Manufactured Bone Tissue Scaffolds, Composed of Polyamide, Polyolefin, and Cellulose Fibers. Published MSEC and ASME June 27, 2022
https://asmedigitalcollection.asme.org/MSEC/proceedings/MSEC2022/85802/V001T01A023/1146907
2) Paavana Krishna Mandava, Joshua Blatt, Zachary Preston, Jacob Kirkendoll, Robert Joyce, Roozbeh (Ross) Salary. An Image-Based Convolutional Neural Network Platform for the Prediction of the Porosity of Composite Bone Scaffolds. IMECE November 2, 2022
Abigail Tetteh PhD student at the Implant Research Center Drexel University and Dr's MacDonald and Kurtz helped produce this poster where 3D printed bone like replicas made with FibreTuff were analyzed. The data collected indicated FibreTuff biocompatible filaments produced a cancellous structure. Awesome work performed by the team to validate FibreTuff impressive 3D printing qualities. More information coming soon.
Roger Sherman's presented at Duquesne University this poster for Graduate Research Symposium. His work with Dr's Hammer, Viator and Marshall was outstanding. This use case by 3D printing FibreTuff biocompatible filaments as a hyoid bone will help professional's understand damage to the neck and simulate fractures.
Marshall University professor Dr Ross Salary and his students printed FibreTuff in a FDM method to replicate bone like scaffolds and presented the poster at the Biofabrication 2019 event held in Columbus Ohio October 20-22. Dr Salary has been steadfast to analyze and find a 3D printing bone replacement with like qualities.
3D printing of the FibreTuff PAPC II passed Cytotoxicity and Skin irritation tests (ISO 10993-5 and ISO 10993-10) and USP Class VI testing. The in vivo testing was performed by NAMSA a regulatory approved testing company for medical devices and implants.
The 3D printing of FibreTuff biocompatible material has been investigated for bioactivity. The results showed biocompatible behavior with unprecedented apatite formation. These results with FibreTuff displayed improved results versus HaPEEK or AMPPEEK. FibreTuff PAPC has passed USP Class VI testing performed by NAMSA for temporary implant status.
The 3D Printing of porous bone like scaffolds made with FibreTuff PAPC were investigated in vitro and showed osteoblast adhesion. These bone tissue engineering tests were preformed by Dr Safadi at the Medical college in Northeast Ohio.
Dr Sikder of Cleveland State University performed a Bioactivity investigation of 3D printing FibreTuff, having microporous cellular structure. Dr Sikder immersed the microporous disc made with FibreTuff in Simulated Body Fluids (SBF). The SEM showed printed FibreTuff was biocompatible and had apatite formation.
The 3D Printing of FibreTuff PAPC+Nylon66 has been implanted for a Dental Bone Grafting Material. This printed PAPC biomaterial was autoclaved at 250C for 20min at 28psi, immersed in antibiotics, then customized to the desired shape, implanted and closed with sutures. Less than 30 days.
Christophe Marquette benchmarking the 3D printing of FibreTuff PAPC material for bioreactor development. The CAD design was produced by the 3d.FAB platform team. The design was performed by Lucas Lemarié, PhD student at SEGULA Technologies , a great example of thread integration.
The FibreTuff® technology includes USPTO trademark, patent pending applications and 3D printed patented compositions, process and parts.
Dr Hartman of OMFS used FibreTuff for 3D printing patient specific models in resident training and practice prior to larger, complex dental implant cases. The attached clip is a model surgery where zygomatic implants are used with a X-Guide dynamic navigation machine. He segmented the patient's CBCT and then printed it out of FibreTuff material. Dr Hartman is impressed with 3D printed FibreTuff PAPC biocompatible material - It doesn't heat up and melt, produce burs like other filaments and its easy to drill and replicates real bone.
This website uses cookies. By continuing to use this site you accept our use of cookies.